Lecture 13:
Nonregular Languages



Recap from Last Time



Theorem: The following are all equivalent:

- L. is a regular language.

- There is a DFA D such that ¥£(D) = L.

- There is an NFA N such that $(N) = L.

- There is a regular expression R such that £(R) = L.



New Stuff!



A Warm-Up Exercise



Consider a DFA for £(a* U b*)...

Not knowing what the rest of the

Suppose we DFA looks like, which of the
land here upon following can we say are true?
reading aaaa. (1) aa must also land in gx.

(2) aa might also land in gx.

Lennee (3) aa cannot land land in gx.

(4) bb must also land in gx.

(5) bb might also land in gx.
(6) bb canneot land in gx.

Answer at
https://cs103.stanford.edu/pollev



https://cs103.stanford.edu/pollev

Nonregular Languages



A Powerful Intuition

 Regular languages correspond to problems
that can be solved with finite memory.

« At each point in time, we only need to store one
of finitely many pieces of information.

 Nonregular languages, in a sense, correspond to
problems that cannot be solved with finite memory.

» Since every computer ever built has finite memory,
in a sense, nonregular languages correspond to
problems that cannot be solved by physical
computers!

 Though there’s a bit of an asterisk here we need
to address. Hold tight!



Finding Nonregular Languages



Finding Nonregular Languages

« To prove that a language is regular, we can just find a
DFA, NFA, or regex for it.

» To prove that a language is not regular, we need to
prove that there are no possible DFAs, NFAs, or
regexes for it.

* Claim: We can actually just prove that there's no DFA for it.
Why is this?

* This sort of argument will be challenging. Our
arguments will be somewhat technical in nature, since
we need to rigorously establish that no amount of
creativity could produce a DFA for a given language.

* Let's see an example of how to do this.



A Simple Language

 Let 2 = {3, b} and consider the following
language:

E={ab"|n€eN}

* F is the language of all strings of n a's
tollowed by n b's:

{ &, ab, aabb, aaabbb, aaaabbbb, ... }



A Simple Language

E={ab"|neN}

None of these regular expressions are
regexes for the language E. Explain why not.

a*b*
(ab)*
€ U ab U a*b? U a’b?

Answer at https://cs103.stanford.edu/pollev



https://cs103.stanford.edu/pollev

Let's imagine what a DFA for the language
{ a"b" | n € N} would have to look like.

Can we say anything about it?



Keeping Things Separated

aaaa aaaabbbb

aa (?) aabbbb

What happens if g is...

...an accepting state? We accept aabbbb & E'!
...a rejecting state? We reject aaaabbbb € E!




A More General Result

 Lemma: If Dis a DFA for E = {a"b" | n € N} and
we run D on any strings a™ # a", then those strings
do not end in the same state.

 Proof Idea:

« Suppose you do end up in the same state. Then a™b™
and a"b™ end up in the same state (DFAs are
deterministic, so we follow the same transitions).
But then we either reject a”b™ (oops) or accept a™b”

(oops).

 Powerful intuition: Any DFA for E must keep a™
and a" separated. It needs to remember something
fundamentally different atter reading those
strings.



Suppose we have a DFA for E...

a].
aO é}
a3
start f
d

5

a2

w
~

oQ‘—



Theorem: The language E = { a"b" | n € N } is not regular.

Proof: Suppose for the sake of contradiction that E is regular.
Let D be a DFA for E, and let k be the number of states in
D. Consider the strings a° at, a?, ..., ak. This is a collection
of k+1 strings and there are only k states in D. Therefore,
by the pigeonhole principle, there must be two distinct
strings a™ and a"” that end in the same state when run
through D. But this is impossible, since we know that a™
and a" cannot end in the same state when run through D.

We have reached a contradiction, so our assumption must
have been wrong. Therefore, E is not regular.

We're going to see a simpler proof of this result later on once we've built more
machinery. If (hypothetically speaking) you want to prove something like this in
the future, we'd recommend not using this proof as a template.




What Just Happened?

 We've just hit the limit of finite-memory
computation.

« ADFAfor E = { a'"| n € N } needs to keep
infinitely many strings separated.

 There's no way to do this with finitely many
possible states!

* And so...

... you can’t build a DFA for E,
... or design an NFA for E,
... Or write a regex for E.

c Wow!



Time-Out for Announcements!



Second Midterm Logistics

* Our second midterm exam is next Monday, November 10
from 7:00PM - 10:00PM

Seating assignments have changed.
= Check the seating assignment page again. =
Write down your new seat.

« Topic coverage is primarily lectures 06 - 13 (functions
through induction) and PS3 - PS5. Finite automata and
onward won’t be tested here.

« Because the material is cumulative, topics from PS1 - PS2 and
Lectures 00 - 05 are also fair game.

 The exam is closed-book and closed-computer. You can bring
one double-sided 8.5” X 11” sheet of notes with you.

* Contact us ASAP if you need an alternate exam and haven’'t
heard from us with date/time/place.



Review Session

 Kenneth is holding a review session tomorrow
(Thursday). Location / time are up on Ed.

 As with last time, this is not recorded.

« As with last time, come prepared with questions
you want to ask.

« We also have a ton of practice exams up on the
course website.

* Best of luck - you can do this!



Back to CS103!



Generalizing the Proof



What We Did

* Our proof that E = {a"b" | n € N} is not
regular relied on several observations:
* No two strings a™ # a" can end in the same

state in any DFA for E. Appending b™ puts
one string into E and keeps the other out.

 DFAs only have finitely many states, so there
simply isn’t room to keep all these strings
separated.

* So there can’t be a DFA for E.
* Question: Can we generalize this idea?



Distinguishability

* Let L be an arbitrary language over 2.

« Strings x € X* and y € 2* are distinguishable
relative to L when there is a string w € X*
such that exactly one of xw and yw is in L.

- We denote this by writing x =, y.

- Formally, we say that x Z, y when

dweX*, (xweLoyw¢l)

L

This 1s how we
express exclusive *0OrR”
in proposifional logic,




Distinguishability

« Consider the language
E={ab"|né€eN }

« There’s a collection of
strings to the right.

« Which pairs of these strings
are distinguishable relative
to E? What would you
append to distinguish
them?

* (Two strings x and y are
distinguishable relative to E
when there’s a string w
where exactly one of xw
and yw belongs to E.)




Distinguishability

* A palindrome is a string that is the same when the
characters are read left-to-right and right-to-left.

« Consider the language
L={we{a, b}*|wis a palindrome }

 Which pairs of the strings below are distinguishable relative
to L? What would you append to distinguish them?

aab

ddad




Distinguishing Sets

 Let L C 2* be a language. A distinguishing set for L
is set S C 2* where the following is true:

Vx €ES.Vy€S. (x #y- X ZLY).

* In other words, it’s a set of strings S where all pairs of
distinct strings in S are distinguishable relative to L.




Distinguishing Sets

+LetE={ab"|neN}.

 Which of the following are distinguishing
sets for E?

{¢&, a ab}
a*
{ab"|neN }

Answer at
https://cs103.stanford.edu/pollev



https://cs103.stanford.edu/pollev

Distinguishing Sets

cletL={we{a b}*|wisa
palindrome }.

 Which of the following are distinguishing
sets for L?

{¢&, a ab}
a*
{ab"|neN }

Answer at
https://cs103.stanford.edu/pollev



https://cs103.stanford.edu/pollev

Distinguishability

« Theorem: Let L be an arbitrary language over . Let
X € 2* and y € 2* be strings where x Z. y. If D is a DFA
where ¥(D) = L, then D must end in different states when

run on inputs x and y.
 Proof sketch:




Theorem (Myhill-Nerode):

Let L be a language. If L has an infinite <
distinguishing set, then L is not regular.

(A distinguishing set
confaining infinitely
many strings., )




Theorem: Let L be a language. If L. has an infinite distinguishing
set, then L is not regular.

Proof: Assume for the sake of contradiction that there is an infinite
distinguishing set S for L but that L is regular.

We know L is regular, so there is a DFA D for L. Let k be the
number of states in D. Since there are infinitely many strings in
S, we can pick k+1 distinct strings w1, wz, ..., and w41 from S.

Consider what happens when we run D on all those strings.
There are only k states in D and we have k+1 strings, so by the
pigeonhole principle there are strings wi # w; in S that end in
the same state when run through D.

Because wi # wj and S is a distinguishing set for L, we know
that w: Z, wj. As we saw earlier, when we run w: and w; through
D, they therefore end up in different states. But this is
impossible: wi and w; end in the same state when run through D.

We have reached a contradiction, so our assumption must have
been wrong. Thus L is not a regular language. W



Using the Myhill-Nerode Theorem



Theorem: The language E = { a"b" | n € N } is
not regular.

Proof: Let S = { a" | n € N }. We will prove that S is
infinite and that S is a distinguishing set for E.

To see that S is infinite, note that S contains one
string for each natural number.

To see that S is a distinguishing set for E, consider
any two strings a™, a® € S where m # n. Note that
amb™ € E and that a"b™ ¢ E. Therefore, we see that
a™ Z_ a", as required.

Since S is infinite and is a distinguishing set for E,
by the Myhill-Nerode theorem we see that E is not
regular. B



Theorem: The language L = { w € {3, b}* | wisa
palindrome } is not regular.

Proof: Let S = { a"b" | n € N }. We will prove that S
is infinite and that S is a distinguishing set for L.

To see that S is infinite, note that S contains one
string for each natural number.

To see that S is a distinguishing set for L, consider
any two strings a™b™, a"b® € S where m # n. Note
that a”b™b™a™ € L and that a"b"b™a™ ¢ L. Therefore,
we see that am™b™ Z, a"b", as required.

Since S is infinite and is a distinguishing set for L,
by the Myhill-Nerode theorem we see that L is not
regular. B



Theorem: The language L = { w € {3, b}* | wisa
palindrome } is not regular.

Proof: Let S = { a" | n € N }. We will prove that S
is infinite and that S is a distinguishing set for L.

To see that S is infinite, note that S contains one
string for each natural number.

To see that S is a distinguishing set for L, consider
any two strings a™, a® € S where m # n. Note

that a”ba™ € L and that a"ba™ ¢ L. Therefore, we
see that a™ #, a", as required.

Since S is infinite and is a distinguishing set for L,
by the Myhill-Nerode theorem we see that L is not
regular. B



Approaching Myhill-Nerode

* The challenge in using the Myhill-Nerode
theorem is finding the right set of strings.

e General intuition:

« Start by thinking about what information a computer
“must” remember in order to answer correctly.

* Choose a group of strings that all require different
information.

* Prove that you have infinitely many strings an that
the group of strings is a distinguishing set.

 Check our online “Guide to the Myhill-
Nerode Theorem” for more details.



Tying Everything Together

 Key Intuition for DFAs: Have each state in a
DFA represent some key piece of information
the automaton has to remember.

» If you only need to remember one of finitely many
pieces of information, that gives you a DFA: the
states correspond to those pieces of information.

* If you must remember one of infinitely many pieces
of information, your language is not regular: use the
information that “must be remembered” to build a
distinguishing set for the Myhill-Nerode theorem.

* This can be made rigorous! Take CS154 for
details.



Where We Stand



Where We Stand

« We've ended up where we are now by trying to answer the
question “what problems can you solve with a computer?”

 We defined a computer to be DFA, which means that the
problems we can solve are precisely the regular languages.

« We've discovered several equivalent ways to think about
regular languages (DFAs, NFAs, and regular expressions)
and used that to reason about the regular languages.

« We now have a powerful intuition for where we ended up:
DFAs are finite-memory computers, and regular languages
correspond to problems solvable with finite memory.

« Putting all of this together, we have a much deeper sense
for what finite memory computation looks like - and what it
doesn't look like!



Where We're Going

« What does computation look like with
unbounded memory?

 What problems can you solve with
unbounded-memory computers?

« What does it even mean to “solve” such a
problem?

 And how do we know the answers to any
of these questions?



Your Action Items

* Read “Guide to the Myhill-Nerode
Theorem.”

« It’s a useful refresher and deep-dive into all the
topics we covered today.

« And it has worked exercises to give you a sense
of how the theorem works!

 Finish Problem Set 6.

* Slow and steady progress is key here.
 Come talk to us if you have questions!



Next Time

* Context-Free Languages

 Context-Free Grammars
* Generating Languages from Scratch



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

